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LOCAL ERROR CONTROL IN 

NUMERICAL INTEGRATION THROUGH OPTIMIZING 
THE ORDER OF THE INTEGRATOR 

THE NATURE OF NUMERICAL INTEGRATION 

Numerical integration consists of replacing the function to be integrated by 
another of simpler form, usually a polynomial, which is then integrated by some 
standard formula. This is true whether the integrand is a function of the inde- 
pendent variable only, as in the case 

o r  is a function of both independent and dependent variables, as in the differen- 
tial equation 

The first case is the problem of the integral calculus, and is solved by nu- 
merical quadrature. Here, for a given x we can evaluate y', and can substitute 
values of y', o r  finite differences of y', into appropriate formulas to obtain the 
integral y over some domain. 

In the second case we require knowledge of the integral y for a given x be- 
fore we can evaluate y'. This is like having to know the answer before we can 
ask the question. A common approach to this problem is to estimate y at the 
specified x, substitute it into the differential equation to obtain an estimate of y', 
after which y is computed as in ordinary quadrature. This procedure is called 
the predictor and corrector method, of which numerous forms exist. If the first 
computed y is not good enough, it may be substituted into the differential equa- 
tion exactly a s  was the original estimate of y .  An improved y' is then found, 
which produces a better y. 

We shall assume throughout that y' is approximated by a polynomial. Then 
the success of the numerical integration depends upon how well y' is represented 
by the polynomial which replaces it, for the formulas integrate the polynomial 
exactly. 
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HAZARDS OF POLYNOMIAL APPROXIMATION 

X -3 -2 -1 0 1 2 3 

f (x) .1 .2 .5 1 .5 .2 .1 

It is well known that polynomials, under appropriate circumstances, can be 
made to approximate almost any function to arbitrary accuracy. The Weier- 
s t rass  approximation theorem assures us that if f (x) is a real function con- 
tinuous on the closed interval [a, bl,  then for every positive number E there 
exists a polynomial P(x) of degree n ,  

4 

.05882 352 

such that I f (x) -P(x)l < E for all x in [a ,  bl .  

But this theorem is widely misinterpreted. To begin with, the fact that the 
desired polynomial exists does not imply that we can find it. That does not 
suggest we lack skills or  methods. We may be unable to find the polynomial of 
arbitrary accuracy simply because we cannot get enough information about it. 

Of one thing we may be sure. The existence of the desired polynomial does 
not mean it is of low degree. But-here is something often misunderstood: A 
polynomial of higher degree does not necessarily give a better approximation. 

Consider the example 

Values of f (x) are  given for  equal intervals in x. 

Table 1 

We now interpolate among these points to find the functional value f (. 5) , which 
is the same thing as saying we approximate the function by a polynomial which 
we evaluate for x = . 5 .  Since f (x) is of simple form, we can evaluate f (. 5) 
and know the correct answer in advance. 
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= .8 1 f ( . 5 )  =. 
1 t ( . 5 ) 2  

I 5 

To represent f (x) by a polynomial of degree n we pass the polynomial ex- 
actly through n + 1 known values of f (x). The Weierstrass theorem assures 
that a polynomial exists which approximates f (x) uniformly over the domain in 
question, but let us be realistic and compute our polynomial from information 
obtained as close as possible to the one value we a re  interested in. Thus, in the 
table below, when n t 1 is even the points are symmetric with respect to x = 
. 5 ;  when n t 1 is odd one extra point is taken before x = .5. 

I 6 

Consider the table, then, which gives the values of P(. 5) where P(x) is a 
polynomial of the degree specified. 
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Table 2 

2 

Degree n of 
Polynomial 

2 

1 

4 

2 

4 

3 

4 

Placement of Points 
Before 1 After 

I 1  

1 2  

3 1 3  

4 1 3  

See Text 

.75 I .75 

.875 I ,80961 540 
~~ 

.8 I .80192 309 

.85625 I .80018 986 

.81406 25 I .80008 631 

.85015 625 I .80000 002 

' .82136 030 .80000 156 

Contrary to common belief, the attempt to approximate f (x) by polynomials 
of higher degree leads to failure. Why do not those of degree greater than 3 do 
as well as the cubic? Does this example disprove Weierstrass? 

The difficulty, aside from the fact that a rational function is not easily fitted 
by a polynomial, is that no attention was given to the interval [a ,  bl over which 
the function was to be approximated. For the polynomial of degree one the in- 
terval used was [O, 11; for  degree 2 the interval was [-I, 11 ; for degree 7 the 
interval was [-3,41. A final column is added to the table showing interpolated 
values of f (. 5) when all information consists of n t 1 points equally spaced 
within the interval LO, 11. 



It is clear, then, that increasing the degree of the approximating polynomial 
does not always guarantee a better approximation. It should be clear also that 
changing to an integration formula of higher order does not necessarily assure 
a more accurate integral. 

CONTROLS IN NUMERICAL INTEGRATION 

If we seek to increase the accuracy of the integral 

f (x) dx s: 
by using a formula of higher order, then, in general, we require more informa- 
tion about f (x) in [a ,  bl , which is to say the integration interval Ax = h from 
one point to the next must be shortened. 

And here we have two important controls to govern the accuracy of numeri- 
cal integration: 

1. We may select the order of the formula. 

2. We may specify the step size h. 

They are intimately related; and both are  related to the third control: 

3. We may decide the number of significant digits to be retained in the com- 
putation. (This last decision usually consists of directing the use of single or  
double precision mode of machine operation). 

Very well, you may say, but how do we apply the controls? 

Ordinarily when one undertakes a job of numerical integration his first 
choice is the integration formula. He  can decide later what step size to use, 
and whether to run in single o r  double precision. But how does he pick the 
formula ? 

FROM INTERPOLATION TO INTEGRATION 

First let us consider what an integration formula is and how we get it. Al- 
though i t  is not the only way, one common way to obtain an integration formula 
is to integrate formally an interpolation formula. The interpolation formula is 
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usually an equation into which we may substitute either known values of thegiven 
function o r  their finite differences, together with an arbitrary value of the inde- 
pendent variable for  which we wish to know the corresponding value of the func- 
tion. The formula automatically fits a polynomial exactly to the given points and 
evaluates it at the arbitrary point without our ever knowing explicitly what the 
polynomial is. 

If we did know the interpolating polynomial, we could integrate it term by 
term between selected limits and obtain an approximation to the definite integral 
of the given function between those limits. But by integrating the interpolation 
formula we obtain an integration formula which is general. Suppose we choose 
the Lagrange interpolation formula, which employs functional values directly: 
we get an integration formula in terms of functional values. Suppose we choose 
Stirling's formula, which employs central differences of the functional values: 
we get an integration formula in terms of central differences, as we shall see 
later. 

In general the integration formulas expressed in differences a r e  no better 
o r  worse than those expressed in ordinates. Often one form is readily derived 
from the other. For certain purposes, however, one may be better suited. For  
our immediate purpose of selecting the order of formula to do a specific job, we 
find an advantage in the formulas expressed in differences. 

DERIVATION OF THE "COWELL'S" FORMULA 

Suppose we are called upon to integrate the equations of motion of an artifi- 
cial earth satellite, in rectangular coordinates. We have here a system of three 
second-order equations which must be integrated simultaneously. They are  of 
the form 

;; = f (x ,  y, z; t), 

with corresponding equations for  y and z . The first derivative 
pear explicitly. 

does not ap- 

We digress briefly to consider the derivation of Taylor's formula with re-  
mainder, which we shall use in obtaining the integration formula. 

Making all necessary assumptions about the continuity of f (x) and the ex- 
istence and continuity of its derivatives of all orders,  we can construct the 
formula by integrating the n- th  derivative n times from xo to x. 
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f (x) dx dx = f ("- l )  (x) dx - Jxl f ("-l )(xo) dx I, 
Since the integrand f("-')(xo) is a constant, we have 

f ("'(x) dx dx = f - (x - x,) f ("-')(xo) 

f '"-2'(x) = f (n-2)(Xo) + (x - xo) f ("-1 )(xo) t f ("'(x) dx dx. 

Although we have performed only two integrations, already the Taylor's for- 
mula has begun to take shape. Each additional integration will provide another 
term in the series. But this is far enough. Let n = 2 .  The zero-th derivative 
of f (x) is simply f (x), and the last equation becomes 

x x  

f" (x) dx dx . I, I, f (x) = f (x,) -t (x - x,) f' (x,) t 
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Using the notation y = f (x),  we evaluate y, = f (x,) and y- , = f (x-,)  by 
means of (1). 

Y, = YO + hYb f I' Jx Y" dxdx 
0 x o  

Add these equations and obtain 

Y, - 2 Y o  + Y-1 = 1" 1' y" dxdx t ['-' 1' y" dxdx. 
J x o  J x o  J x  J x o  0 .  

It will be observed that the left side of this equation is s2 y o ,  the second 
central difference in Sheppard's notation. Further, the equation does not con- 
tain the first derivative, a significant fact since we are seeking a method for in- 
tegrating second-order differential equations where the first derivative is absent. 

To dispose of the two integrals on the right side of this equation we make 
use of Stirling's interpolation formula, which is expressed in central difference 
notation. 

I SZ(S2 - 1 2 ) ( s 2  - 22) . . . [s2 - (n-1)2], - t P y ,  * 
(2n)! (3) 
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Here 

. 

1 
P Y o = -  y1 + Y 1  

2 ( A - 4 )  

where h is the length of equal intervals in x. 

It is clear that the factors 

and 

in (3) a re  constants, so that the formula can be integrated with respect to the 
variable s . Let us, then, represent y" in (2) by Stirling's interpolation formu- 
la, and integrate twice as (2) requires. 

Stirling's formula is an infinite power series.  If we expand it to some point 
and truncate the series,  we have simply a polynomial, which we can integrate 
term by term. 

Upon carrying out the integration and adding the two integrals as called for 
in (2), we find that all terms in pSZn- y i  vanish; and, after considerable arith- 
metic involving the addition of common fractions, which are kept as common 
fractions fo r  exactness, we finally obtain 

86y; - 289 Say; + ... 1 31 S2y; - 1 py; + 

240 60480 36 28800 
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This is the formula used by Cowell and Crommelin to integrate the orbit of 
Halley's comet. Nowadays it is most often used in a modified form with values 
of y" instead of central differences of y " ,  but for our purpose the difference 
form has special advantages, as  was suggested earlier. 

The first advantage is that (4) itself is an infinite series. How many terms 
appear depends upon how many were retained and integrated in Stirling's formula. 
But the important thing is that if we wish to use a formula of order higher than 
(4), we simply compute the coefficient of the next-higher term without changing 
the lower-order terms. We shall see later that it has another advantage. 

To use (4) as  written, we compute a central difference table to ninth differ- 
ences S9 y:. Extrapolate values of S9 y" beyond S9 yz , assuming that S9 y:,; = 
S 9  yi ,  and sum across the table until we have the necessary values to compute 
S2 y, from the formula. Since 

s 2  Y, = Y,,, - 2Yn + Ynq1 t 

we have 

Here, then, is an estimate of the integral y at the n t l - t h  step, from which 
we obtain an estimate of y: , , by substituting into the differential equation. With 
this y:,, compute the line of differences out to S9 Y : , ~ ,  which we had formerly 
estimated by extrapolation. With these corrected differences, use the formula to 
find' a better S2 y,. Compute a better y,,, . Iterate until y,,, converges. 

USE OF DIFFERENCE TABLE IN OPTIMIZING CONTROLS 

Take a good look at (4). Suppose we have the indicated differences and a 
value for h.  Then we can compute the contribution of each term, and can see 
readily whether the k t h  term affects the last significant digit retained in the 
computation. Here all three controls come together. For a given h we may see 
that h2 ak S y: is less than 1 0'8 and may be omitted in single precision opera- 
tion, but is greater than 10-15 and must be included for double precision. . 

We can control the magnitude of h2ak6k y: in two ways: by increasing k o r  
by decreasing h. In (4) we see that coefficients ak of successive terms grow 
smaller, and it may be shown that this trend would continue if more terms were 
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computed. It is also true in general--although not always, and the exceptions 
constitute a dangerous trap* --that higher-order differences tend to zero. Hence, 
by taking more terms we make both of the last two factors, and their product, 
smaller. 

Suppose, on the other hand, that we take a shorter step size h , say cut h in 
half. Immediately we multiply each term by one fourth because of the h2 factor; 
but, beyond this, the differences also are reduced. First  differences are approx- 
imately half a s  large as  before; second differences, one fourth as large; n t h  
differences, 1/2" as large. Therefore, cutting h makes the first and third fac- 
tors,  and their product, smaller. 

All this would be nice if we could obtain the difference table over the domain 
of integration. We could find an optimum combination of h and k, step size and 
order of formula, to squeeze out the last bit of significance at each integration 
step. 

In the case of simple quadrature this actually can be done if the quadrature 
formula is expressed in differences. But for differential equations we are  not 
likely ever to have a difference table of the actual quantities we wish to inte- 
grate. We obtain estimates of these quantities only by substituting into the dif- 
ferential equation the estimates of the integral at successive steps. 

Of course even here we can look at the successive terms of the formula and 
see which actually are contributing to the solution, and how much. But this study 
can be made only after we have picked some formula, and some h ,  and some 
number of digits to carry. 

In the problem we assigned ourselves earlier, that of integrating the equa- 
tions of motion of an artificial earth satellite, we can do better. We can form a 
difference table from values of acceleration based upon the two-body solution. 
Admittedly, the perturbed orbit is not the unperturbed orbit; but in most cases 
the greatest perturbing force, that due to the nonsphericity of the earth, is less 
than 
values of y" change with time we can get some notion of how the actual values 
change . 

times the central attracting force. By observing how the unperturbed 

If we consider only the order of the integration formula, we probably should 
assume that a rapidly changing integrand will require a formula of higher order 
than a slowly changing one. It might be wise, then, to look at the table of differ- 
ences in those parts of the orbit where accelerations are changing most rapidly 
as well as where they a re  changing slowly. 

*Form differences of the v a l u e s  in Table  1 .  The s ix th  difference i s  -7.2; the seventh,  11.8 t. 
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We can find the values of true anomaly corresponding to the maximum and 
minimum rates of change of acceleration as a function eccentricity. But this 
really is not much help because we are integrating not the total acceleration but 
its rectangular components, and where one component is changing rapidly another 
may be changing slowly. It would seem wise, therefore, to pick some likely value 
of h , say one minute, and compute the difference table for two-body accelerations 
from perigee to apogee. 

Table 3A corresponds to a 20-step section in the orbit of an actual satellite, 
but without perturbations. The quantities labelled "Maximum in Block" are the 
largest among all the kth differences for  the component specified. Thus for 
;; there were 14 values of 6th differences, of which the largest was .12600 x 
Here h is one minute of time, o r  .07436 492 canonical time units. 

During the part of the orbit covered by this table the magnitude of the x- 
component of position reached a maximum of 1.09663+ canonical units of length. 
In single precision this is represented as .lo966389 x l o + ' ;  in double precision, 
as .lo966389829835 x l o t 1 .  The last three columns of the table are kth terms 
in the formula (4). Clearly terms in S 6  2 and higher a r e  not significant in single 
precision operation: they could add nothing to x as represented above. But all 
terms listed are significant for  double precision. 

Perhaps a term of order higher than 812 2 might also be significant. Where 
do we stop? We have seen integration formulas which actually used the equiva- 
lent of twelfth differences in (4). But at some point it would seem reasonable to 
cut the step size and use fewer differences, i .  e .  , a formula of lower order. 

Table 3B shows what happens in the same part of the orbit when h is cut to 
half a minute, or .03718 246 canonical time units. Already the terms in fourth 
differences are insignificant fo r  single precision, while those in eighth differences 
barely affect the last digit in double precision. 

It is unnecessary, o r  course, to form the products as given in Table 3. In- 
stead, we can consider the first two factors only, and decide how Iarge the kth 
difference must be for significance. In double precision, for  example, if x is 
approximately one canonical unit of length, as above, the 15th significant digit is 
of the order of 10-14, and the product of the three factors must be no less than 
this quantity. Thus, for  h = 1 minute, S I 2  ;; must be no less than ,27805 X 

h2 a12 SI2 2 = (.13825 x 10'2) (.26014 X 

(.35964 X l o m 8 )  812 
8 1 2  2 > - 

- > l o m i 4  
S1* 2 .27805 x lo-'. 
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AN AUTOMATIC FORMULA SELECTOR 

We have known all along that a computer can do anything we can tell it how 
to do. It seems not unreasonable to suppose we might tell it how to select its 
own integration formula in a particular instance. 

Suppose we wish to integrate an orbit of such and such properties. The com- 
puter might integrate one revolution with a formula of high order and short step 
size. Then, by examining the differences of various orders, i t  could decide that 
terms in the formula beyond a certain k add nothing to the solution. On the 
other hand, it might decide that because the k it selected is smaller than some 
predetermined value, the step size should be lengthened. 

To be sure, the differences would not be differences of the actual accelera- 
tions we want to integrate, but they would be differences of the only accelerations 
we ever can integrate. And they would include the perturbing forces. 

Having selected the order of the formula and the step size, the actual com- 
putation might then be carried out using an equivalent formula in terms of the 
accelerations directly instead of differences of accelerations, thereby avoiding 
further computation and storing of the difference table. 

The orbital parameters which govern what order of formula should be used, 
and what step size, are the semimajor axis a and the eccentricity e .  It is rea- 
sonable to think that if some study is given to the results of the automatic for- 
mula selection, what formula goes with which a and e ,  we might then change 
the integration program so that it makes its selection on the basis of the initial 
input alone. 

Whether it is desirable to change the formula o r  step size within one revo- 
lution of the satellite would certainly depend upon a and e .  For any a ,  but e = 0, 
there seems little need for changing either the formula or  the step size. For 
large and large e ,  however, i t  might be wise to change either formula or  step 
size, or both, within one revolution. Again, since the rate of change of acceler- 
ation depends upon these two parameters, the computer could decide, on the basis 
of the initial conditions, whether to make changes and, if so, where. 


